ON THE DIRICHLET PROBLEM FOR A QUASILINEAR ELLIPTIC
SECOND ORDER EQUATION WITH TRIPLE DEGENERACY AND
SINGULARITY IN A DOMAIN WITH EDGE ON THE BOUNDARY

© MiIcHAIL BORSUK AND DMITRIY PORTNYAGIN

ABSTRACT. Boundedness and Holder continuity of weak solutions have been proved for
one quasilinear elliptic second order equation with triple degeneracy and singularity of the
form
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in the domain with edge on the boundary. There has been obtained the exact Holder
exponent near the edge.

In the present work we investigate the behaviour of weak solutions of the first bound-
ary value problem for a quasilinear elliptic second order equation with triple degeneracy
and singularity near the edge of the domain boundary. Namely, we shall derive the
exact estimate of weak solutions in a neighborhood of edge of the domain boundary for
the Dirichlet problem
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(summation over repeated indices from 1 to n is understood), where G is n— dimen-
sional bounded domain the boundary of which contains an edge. Similar investigation
has been lead by us early in [10] for a domain with conical boundary point. The special
structure of the solution near an edge is of particular interest for physical applications
(see [2, 8]). It can be used also to improve numerical algorithms (see [1, 3, 9]).

For z = (z1,...,25) let us define cylindrical coordinates (Z,r,w):

Tp-—-1
— P -—
z-__(z1,...,zn_2), T=4/Z, 1+:‘Bi, w—arcctg .

n

Let G be a domain in R™ bounded by (n — 1)— dimensional manifold 8G that
possesses the following properties: '
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1) 8G contains smooth (n — 2)-dimensional submanifold I° without boundary, a
neighborhood of every point of which is locally diffeomorphic to the dihedral cone
D= {(rw)]0<r<oo, we(~wo/2,wo/2)} xR 2 0<wp< 2.

2} 8G\T - smooth submanifold of R™. .

Without loss of generality we can suppose that there exists the number d > 0 such
that on I it can be selected the edge T'§ = {(%,0,0)|Z| < d} with the centre in the ori-
gin. We define G¢ = Gﬂ{(&“,r,w)l&“ eR"2 O0<r<d, we(~we/2,wp/2)}; 0<
wg < 27, Thus we assume the G C G and consequently the domain G to be a wedge
in some neighborhood of the edge.
 Let L,{G) be the usual Lebesgue’s space. For real r we define the space VX (G)
as the closure of C§°(G \T') with respect to the norm

” (1 HV:;‘,{G}Z (] Z m{|B} k)+r D‘Buimdz)

18l=0

By M}, - ,(G) we will denote the set of functions u(z) € Loo{G), having first general-
ized derivatives with finite integral

/(r"}ulﬂVn}m +77 M|t de <00, g2 0, T2m~2, m> 1
G
and vanishing on 8G in the sense of traces.

DeFINITION. Function u(z) is called a weak solution of (1)—(2), if u(z) € M}, , ,(G)
and satisfies

f {"’f Ve g e, +aor™ M ululf T g
o

~ pruluft (V{6 }ds f {fo(2)$ + fide ) de

for any function ¢{z) € L(G), vanishing on 8G in the sense of traces and such thai
integrals at both sides are finite.

ASSUMPTIONS: fo{z), fi{z),..., falz) are measuraib_ie functions such that

fo(m) € LP(G), f;(:c) € V“%’u%((?), (i =1,... ,n) : (4) .
1 m 1 1 m 1 " . 2
;<;“;, ~t-<~;~;<1-§-;<m, m——2gr<m3n(m-1,-t-). (5)

We prove the following assertions:
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THEOREM 1. Let u(z) be a weak solution of (1) — (5). Then there exists the con-
stant My > 0 depending only on mes G, n, m, 7, u, g, ap, ||fg(a:)|§L»{G},

| r”%if(z)f‘lL&{G) such that fjuHLm{G} < Mg. If in addition

fﬂ(z) € Vpe,«»'rp(G)! fi(z) € p,—(1+r}p(G) 0 Ve——%,—%(g)? (i b 1‘}' . sn)a
then u(z) is Holder continuous in G with exponent a, depending only on the data of
the assumptions and the domain G.

For the proof of theorem 1 we use the v level sets technique (see §9 chapt. I1 {7]), well-
known statement by Stampacchia {see Lemma B.1 [6]) and the appropriate imbedding
theorems (see [4, 5]).

THEOREM 2. Let u{z) be a weak solution of (1) — (5) with m > 2. Given
folz) € Ly(G), filz) € L{_}mﬂ& (Gyn Vpﬁ'_p(G), (i=1,...,n)
and suppose in addition that there exists constant ky > 0 such that |

af:

5 — fole)| < har?, ©)

where
B>Mg+m—1)—m+7; (M)

A >0 is a solulion of the equation

-i-OG e — 4
/' [(m —1)y® + A%] (% + A?)"F*dy 9 )
(m—14+q+u)B® + )T +A2—m+7) (2 +3)F —ap 2’
where wo € (0,2n) is the opening angle of the dikedral cone, such that:
AMg4+m—1+p)+ A2~ mt 1) > a. (9)

 Then given ¢ > 0 there is a constant ¢, > 0 dcpendihg only on &, wo, n, m, pu,
¢ Go, A, ki, Mo, lfilz)ll, i=0,1,...,n in the corresponding spaces such that

lu(z)] < 'cer‘\"”;’.

The theorem 2 is proved by using the barrier functions technique {see [5]) and weak
comparison principle {see chapt 10 [5]) together-with the theorem 1.

| The construction of barrier function. We coz:sfrnct the barrier function as

wp Wo '
5 m§~], 0<wy <2, A>0 {10)

u m_ﬁr’A‘I)(w), w € [
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- for the homogeneous Dirichlet problem {1) - ~(3)

-Qy = 3%: (r’.iulq}Vuim"zu?‘.) = ' 1)
y, = aorr-—mulu‘q+m——2 “i"'?ﬁlﬂiq_zl‘?u]m, e Ga,

u(z) =0, zeluUITtTUT™ : (12)
\%_20,9Sﬂ<1,q20,m22,r%m«—2- .o (13)

in  n-—  dimensional infinite dihedral cone Gy with the edge
T'o = {(%,0,0)] |#] € R*"2} that contains the origin and lateral faces I'* :

It = {(”a:",r,+%?~)| zeR 0<r< oo};

'™ = {(‘:‘c‘,r,w%)l FeR*™?, 0<r< oo} .

Then ${w)} satisfies the equation:

FrE e

_i}” [()@@2 + @;2)"7' ‘Q;q@r] + ap®IB|etm=2 _ 4 B|Ble? ()'2,;,2 + i”'z)

m
2

w—32

= AMg+m—1) — m + 2+ 7]8|8|s (}.2@2 + @*'2) *, we (~wo/2,wo0/2),
B(—~wg/2) = B(w/2) = 0. '

(14)
(15)
By setting ®'/® = y we arrive at:
[(m = 1)y? + ] (4 + X) 75y + (m — L+ g+ p)(y* + 22 F+ (16)
CEA2 - m 4 T)(? + AT = ag, w € (~wo/2,w0/2),
y(0) = 0, Emw...;;".?...g ylw) = —o0. (17

We explain (17). In fact, from {14)-(15) it follows easily that ®(-w) = $(w),w €
 [~woe/2,w0/2], and from this y(-w) = —y(w),w € [~wo/2,ws/2}. Consequently, we
have y(0) = 0. Further, from (16) we obtain: ' .
= [tm —1)9* + X (5 + X) 7Y =

=(m-1+g+m)E + )T +22-m+7)p? + X)F —go =

= (g2 + N3) "5 [(m—14 g+ B+ X+ AM2-m 1) —a0 >

2 @+ X)WmL+ g+ p) +A2-m+ 1) —a0 2
2AMm -1 4q+p)+ A" 2 ~m 4 7)~ap >0 (18)
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by (9) and (13). Thus it is proved that y'(w) < 0,w € [—wo/2,wo/2]. Therefore y(w)
is decreasing function on [—wp/2,wo/2]. From this we conclude the last condition of
(7). '

Properties of the function @(w). We turn our attention to the properties of
the function ®(w). First of all, notice that the solutions of (14)-(15) are determined
uniquely up to a scalar multiple provided that A satisfies (9). We will consider the
solution normed by the condition :

®(0) =1. (19)
We rewrite the (14) in the following form
~[(m-1)8" + Ne?| (N2 +8”) T 8=

=p? (,\2@2 + @'2) = {AA(m—1) —m+2+7] ("2"'2 + ‘I”g) i

+(m-2)X28"} —ao@™ + (g +p) (A?02 +97) 7. (20)

Now, since m > 2, by virtue of (9) from the (20), it follows that

m—d

-

_3 [(m 18"+ A2<I>2] (F8*+87) T 8" > —a0d™+

+ (82 +2”) 7 {(g+n) (32? +87) + AAm —1) - m + 2+ 7]8%} >

B Qm{(q+,u+m—1),\m+(2—m+r),\m"1 —ao} >0
(here we take into account that by (9) (g+p+m—1)A%>+(2—m+71)X > 0).
Summarizing the above we obtain the following:
B(w) >0 VYw € [~wo/2,wo/2;  B(—wo/2) = B(wo/2) = 0;
®(—w) = B(w) VYw € [—wo/2,wq/2]; - (21)
$'(0)=0; 3"(w)<0 VYw € [-wo/2wo/2]-
COROLLARY 3.

[-wo/2,w0/2]

Now we will solve the (14) - (17). Rewriting the (16) in the form y' = g(y,) we
observe that by (18), g(y) # 0 Vy € R. Moreover, being rational functions with nonzero
denominators g(y) and g¢'(y) are continuous functions. By the theory of ordinary
differential equations the Cauchy’s problem (16), (17) is uniquely solvable in the strip

.{(w’y)_} c [—%P-, -‘gﬁ] X (—00,+00). Integrating (14) - (17), we obtain

®(w) = exp [ wede,

-y (23)
f [(m —1)2% + A2](2% 4+ A2)™Fdz -
( =g :

m—14q+p) (22 +2)F + A2-m+7)(z2+X)"FT —ao
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From this we get in particular (8). The expression {8) gives the equation for sharp
finding of the exponent A in {10). For the case a9 = 0 this exponent is calculated
explicitly in [10]; we denote this value by Ag:

Ao = — 7 {m(m~—2)—~2(m-2)to~—t§
T 2wo(m — 14+ g+ p) to +2(m —2) . -
+ VIt +2(m — 2}t + m2][t2 + 2(m — 2}te + {m — 2)2]
b+ 2(m—-2) !
where to = (2 ~m 4 7).
About the solutions of (8).
We set F(A, a0,w0) = iy + {24)

o0 ki T |
YT

+ [ [(m = 1)5? + X7 + X°) ™5
J (m—1+q+p)(e? + X% + X2 - m + 1)y +X)"F —ao

Let us make a substitution y =tA; £ € (0,+00), we get:

(A a0, w0) = —— ~i— / A(X, a9, t)dt,
| . (25)
- 1M 4 12 4
Aldvao.) = AMm—1+g+ p)(tj(;n i)%i)i (; ij(:n i i;(t? +1)5F o /Am—1 0
Then the (8) takes the expression
52 a0,wo) = 0. (27)
According to what has been said abﬁve .
Sa0we)=0. (28)
" Direct calculations give: | |
%% <0, g% >0 Vi A, ao. | (29)

Hence, we can apply the theorem of implicit functions: in a certain neighborhood of
the point (X;,0) the (27) {and therefore and the (8)) determines A = A{ap,wo) as
smgl&valued continuous function of ao, contmuousiy depending on the parameter wp
and having continuous partial derivatives g;: . M Applying the a.mlytic contmnatxoa

method, we obta.m the solvability of the equat:ou (8) for, Vao.
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Now, we analyze the properties of A ‘as the function A(ag,wp). First, from (27) we
get:
6_3..6_A 6_3 =0 8_32_ -+ _3i =0:
O\ Bag  Oag ' OAOwy Owe
from this it follows that

[5) _ (aao o (g_)

0w~ (3 (3 .
But by virtue of (29) we have:
05 _ [ on, o5 [ oA o5 1
= Ba y > 0, e Ei-dy<0, s =2 V(A ao). (31)
0 0
From (30) - (31) we get:
gﬁ > 0; % <0 Vao. (32)

Thus we derive: the function MA(ap,wp) increases with respect to ap and
decreases with respect to wq .
Now we prove following lemmas.

LEMMA 4.. There takes place the inequality

. .
] 18[4]8'dw < (g, p,m, A) [ 8|7 . (33)
- -2

LEMMA 5. Let inequalities (9), (13) hold and in addition

g+p<l (34)
Then we have
Z
/ |§’lmdw < c(aOsQaP&msAawO)" ' (35)
..l §

From (8) and (10) we get the function w = r“@(w) that will be a barrier of our
boundary value problem (1) — (3).

LEMMA 6. Let ((r) € C§°[0, d] Then the funct:on C(r)w(z) € ‘J'[m,,,q(Gg) If (9)
and (84) hold, then ((r)w(z) €V, ,,,.(G'g) N Leo(GY).

EXAMPLE. Let us take m = 2 and consider the Dirichlet problem
2 ("ulue) = a0 Pulult — pruful Ve, = € Go,
*

u(z) =0, zelouUlTUl,
a0 20,0<p<1,¢20,720.
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From (23), {8) we obtain

V1% 4 4(7/wo)? + ag(1 + g + p)] —

A=
21 +q+8) (36)
and
Targa-p .
®(w) = (cos Ew%) , w € [—we/2,wy/2]. : (37)
The solution of our problem is the function
TFeEH
(r,w) = r*| cos ™
o wo ! (38)

{r,w) € Go, w € [—wy/2,wo/2], 0 <wo < 2m,

where X is defined by (36). The condition {9) for A of Theorem 2 takes the form
{1+ g+ p)2* + Xr > a9 and we see that this inequality is fulfilled. Now we calculate
for (37):

ot +1
2 3 _img—p
2 " I'(3 i‘(z{m— +#})
[ #ras- oo (L) (39)
A (L+q+pPw  T(EHLE)

provided that ¢ + p < 1. This integral is nonconvergent, if ¢+ 4 > 1. At the same
time for Vg > 0 we have:

=2 o ~ " M3 Grrts)

F]

since u < 1. This is comletely in accordance with the above mentioned Lemmas 4-6.
This demonstrates that w{z) € V} (GE), if ¢+ p < 1, and w(z) ¢ ‘Q’;,(Gg),
if g4 p > 1; for the latter case we have w(z) € M, (G), ¥r2>0, ¢>0.

More precise definition of the Holder exponent. Now we shall prove the
Theorem 2. For weak solutions of (1)-{5} we make more precise the value of a— Hélder
exponent established in the Theorem 1. To this end we use the weak comparison
principle (§10.4 [5]) and the barrier function constructed above. Before proving the
theorem 2 we make some txansfcrmatmns and additional mvest:gatxons We make the
change of function : _ .

= t—1, -~ m- .
w=vjp[ T ¢ paruny S (41)
As result the (1) - (2) takes the form:

{ Mov(a) = Flz), z€G;

v{z) =0, z € 9G, (42)
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" where

d - e 1) Fraom — e e :
Mov(z) = " de ('r”in| ~2y ) + BT Moo — ErTy T Vel (43)

G =8 Mag;  Ho= b F(:c) = gim™ (fg(z) o Z w@fi(w) ) . (44)

m- .
i=1 6 *

It is easy to verify that v € V), .(G) NL(G). By the'deﬁn.ition of weak solution

Qlv,¢) = /{?”“|V1}|m"2%‘.¢m + Gor" "M olp|™ 2 - ErTy T Vo™ F(z)qﬁ}d:c =

o
=0  Vé(z) eV, (G)N Lo(G) (45)
Now =
{ f P @(wl, x (46)
A=1x Bw) = &F(w)

plays the role of barrier function. Because of (15) - (17) and (8), it is easy to verify that
(A, ®{w)) is the solution to

i«- [(7\”232 + 3 K 5’] + A (m 1) -m+24+ 7] (“Xz"?ﬁz _. ?5’2) E ==

= B @ B - W% (A ¥ é’z) ¥ , w € (~wo/2,w0/2), (47)
B(—wo/2) = (wa/2) | | (48)
oo m - })yz + ;\_2] (¥ “?Xz)mdy : wo

f = (49)
/ (m— 1+ + X )F 432 - m )@ + X)) —d 2

It is obvious that the properties of (A,®) established above remain valid also for
(A, ®{w)). In particular the (9) becomes of the form:

PalN)=(m—-14+0X " +2-m+7)A"  — >0. © (50)

" Now we consider the perturbation of the (47) - (49). Namely Ve € (0,27 — wp) we
consider on the segment [—®2tXe ote] the problem (47). — (49). for (A, ®.): the
{47). — (49). is obtained from the {47) - (49) by change in the last wp by wo +¢ and
G by @& — ¢. But in virtue of monotomc:ty»propertzes of the X(wo,dp) established
above (see (32)), we obtain .

40

0<X <X Im A :-;“X S )
Now we establish lower bound for function ‘I’,,(w). '
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LEMMA 7. There exists ¢* > 0 such that

W&o £ * '
nt: A I .
68(2)"{»0-%—.‘: VSE(O,E) | (52)

Proof. We turn to the (50) : P{A) > 0. Since P} is a polinomial, by continuity,
there exists a 4*— neighborhood of ), in which (50) is satisfied as before, i.e. there
exists §* > 0 such that Pn,(}) > 0-for VA | |A — A} < §*. We choose the number
é* > 0 in the such way; in particular the inequality '

Pn(A-68)>0 Vée(0,6%) (53)

holds. We recall that X solves the {49). By (51}, now for every & € (0,6*) we
can put A, = X ~ ¢ and solve (49), together with this ), with respect to &; let
£(d) > 0 be obtained solution. Since (51) is true, lims—40¢(d) == +0. Thus we have
the sequence of problems {47}, — (49), with respect to ‘

Qe Be(w)) Ve | 0 < & < min(e(d);2n — wo) = €*(8), V& € (0,6). (54)

We consider &.{w) with Ve from (54). In the same way as (21) we verify that

P (w) <0 Yuwe [ng-i-e wg+§].

2 7 2

But this inequality implies that the function @.{w) is convex up on

[t ] e,

$e(aywy + aaws) 2 1P (w1) + . (wr)

: 55
Ywy,we € {_we;- e’wq;e}; o1 >0, a2 >0 +oz =1. (55)
We put oy = #2-, oy = ?j;;;; w = fizm, wz = 0. By the (48),, we obtain

&, (.".;;1) > wﬁ+¢ ﬁ',({}) w:-i-a’ g.e.d. Lemma is proved. |

COROLLARY 8..

— < $.(w) <1 Yw € [~wo/2,wo/2; (56)
Ve € (0,£%). '

Proof of the Theorem 2. Let (A,,Qg(w)) be the solution of (47); ~ (49}, €€
- (0,¢*), where &* is defined by (54). We shall introduce

w(Fr,w) =17 A, (w), V‘é‘, r€[0,d], w e [~wo/2,we/2].

Let us apply to the problem (42) - (44) weak comparison principle (see, for example,
chapter 10 [5]), on comparing the solution of this problem with the function w, in the
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domain G¢. We denote: g = an{(z,r, w)":i:’ eER™, r=d, we~w/2w/2]}C
8GE. Elementary calculations show that :

Iaeﬁ\g 20=1(z ), z € 8Gy \ Qg (57)

: &
wtlgd Z (‘)g "i'- £
~ {by virtue of (51) and (56)).Finally, for (43) - (44) we obtain:

& | |  (58) B

m—3
g-nﬁwg(l': T w) - r{”‘wl}a‘"m'”é“r{ di; [(Aiéi e @ff) WEM @’;] _—

2

“AfA(m —1) ~m + 2 +7]8, (A2<I>3+{>‘3) R
__E; (AZQQ +§32 ?} {mwl)lg—-mﬁwq)mw

by virtue of {47).. Taking into account {56}, we get

ki3

fmew,,— (“Z_f, r,w} o> r{m-—}),\‘ wm_i_’.. (59)

- (L&'{}“?*E}mml

Now let ¢(z) € V2 .(G) N Loo(G) in (45) be such that ¢(z) >0 Ve € G ¢(z) =
0 Vz € G\ G§. Then VA >0 from (45) it follows that:

QAw,,4) = / 4() (smo(Awa - Flz) ) ds =

f ¢ ”’("m Mowelz) -~ F ‘”’) 4y (6), (40, 59

a/g e {(wwo)mﬂ“:m’”(m"m'"w' ’”M"ﬁ} by (7), (45, (46), (51)

' m—3 ' m—1 - '
() n ) ) fooveras w0
' e X

v

£+ wo m

if A>0 is chosen sufﬁaently large:

Ay lmoiralet o) (1) | (61)
g(m —1) \e : _
Further, by the Theorem 1 v(z}| < cod®/*, therdorc by (58)
a '
As
Aw.| > A >u(z) , (62)
94 wo '+‘ £ n‘
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if A >0 is chosen possibly much more:

o€ + wo) jtezitatezn
£

Az (63)

Thus, if A > 0 is chosen according to (61), {63), then from (45), (60), (62), (57) and
{42} we obtain:
Q(chs‘;b) >0, Q(v?¢) =0 in. G‘J;

Aw, >

aG¢

Yl

Moreover, it is easy to verify that rest conditions of the weak comparison principle are
fulfilled; by this principle we get: v(z) < Aw.(z), Ve € GE. Similarly we prove that
v(z) > —Aw.(z), Vz € G5. Thus, finally, we have

v(2)] < Awe(z) < Ar™e, Yz e GE. (64)

Resubstituting the old variables, by (41}, (46} we obtain from (64) the reéuired bound.
Theorem 2 is proved.
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